LeanDojo: Theorem Proving with Retrieval Augmented Language Models

Kaiyu Yang!, Aidan Swope?, Alex Gu3, Rahul Chalamalal, Peiyang Song?#, Shixing Yu>,
Saad Godil?, Ryan Prenger?, Anima Anandkumar? 2

1Caltech; 2NVIDIA: SMIT:; ‘UC Santa Barbara; °2UT Austin

O O O - g

o . Prove theorems

/" Proof tree n:N Local context \ by Interaction
Fgednn=n I Goal

1

1

. 1
Tactic :
cases n A

gcd00=0 k:N g - =~
unfold ged J igen Rt 1) ek =ikt 1 \ Data LeanDojo Benchmark
unfold ged \ I _\V/N extraction | « 96,962 theorems and proofs
v T :) * 212,787 tactics
* / . | want you to prove a theorem in Lean. The theorem's name is "hello_world *, and it is defined
= ng ((k + 1) % (k + 1)) (k + 1) =k+1 ,l (1281163 premlses j in the file *src/example.lean in "https://github.com/yangky11/lean-example *.
/
/
rewrite mod_self Lean
k:N i} mOdEI Used LeanDojo /% LOCALHOST
F ng 0 (k ¥ 1) =k+1| v T \‘\ REQUEST TO LEANDOJO
l apply gcd_zero_left e T T " L
v i State k:N ‘m—' Encoder-decoder >— rewrite mod_self i) “hessan_£ile pat's sre/exaip. Lo
> X \)
, , ’ F ged (k+1)% (k+1)) (k+1)=k+1 5 =
All accessible premises RESPONSE FROM LEANDOJO

in the math library

Tactic
Encoder j

Encoder >—
Encoder >—

"state_id": O,

"state": "abc : M\n-a+b+c=a+c+b"
1
J

A 4

theorem mod_self (n : nat) : n % n =0

A 4

theorem gcd_zero_left (x : nat) : ged 0 x = x The theorem “hello_world" is stated as follows:

theorem mod_1lt (x : nat) {y : nat} (h : 0<y) : x%hy<y

- e e e e e e e e e e e e e e e e e e e

e T ey SRS S S U S U U U U U USSR I U U U U U ———

. . . 0 =
MaXIT“L_lm . —»theorem mod_self (n * nat) - n A’ n=0 For any three integers "a”, "b",and “¢*,thesum "a + b + ¢ isequaltothesum "a + ¢ +
33K on average cosine similarity theorem mod_eq_of_1t {a b : nat} (h : a<b) : a% b=a b
theorem zero_mod (b : nat) : 0 % b =0
\ ! In other words, it asserts the commutativity of addition for integers, which is a well-known
\ ‘ 3 i3
% def gcd : nat -+ nat - nat /,’ L Encoder >_’ Retrieved premises II property of integers. Let's start the proof. The first step is to apply the “zw" (rewrite) tactic
Y i ‘\ // with the "add_assoc™ lemma, which statesthat “(a + b) + ¢ = a + (b + ¢) . Thiswill
~ -
et ¥ S s 052 - U P -7 allow us to rearrange the terms in the sum.

Used LeanDojo /2 LOCALHOST A~

Top right: LeanDojo extracts proofs in Lean into datasets for training machine learning models. It also enables the trained model to prove

REQUEST TO LEANDOJO

theorems by interacting with Lean's proof environment.

"state_id": O,

"tactic": "rw add_assoc"
1
4

Top left: The proof tree of a Lean theorem Vn € N, gcd n n = n, where gcd is the greatest common divisor. When proving the
RESPONSE FROM LEANDOJO O

theorem, we start from the original theorem as the initial state (the root) and repeatedly apply tactics (the edges) to decompose states into

"{'state_id': 1, 'state': 'abc : N\\n-a + (b +c) =a+c+b', 'proof_finished':
False}"

simpler sub-states, until all states are solved (the leaf nodes). Tactics may rely on premises such asmod_self and gcd_zero_left

defined in a large math library. E.g., mod_self is an existing theorem Vn € N, n % n = 0 used in the proof to simplify the goal. After applying the “add_assoc" lemma, we have the new goal:
For any three integers "a”, "b*,and “¢*,thesum "a + (b + c¢) isequaltothesum "a + ¢
. + b’
Bottom: Our ReProver model. Given a state, it retrieves premises from the math library, which are concatenated with the state and fed into The next step 510 apply the v (ewriie) achic with the ~add_com” lemma, which Siaies

that b + ¢ = ¢ + b". This will allow us to swap the terms “b" and "¢ in the sum.

an encoder-decoder Transformer to generate the next tactic.

Used LeanDojo /% LOCALHOST ~

REQUEST TO LEANDOJO

"state_id": 1,
"tactic": "rw add_comm b c"

[F[T7[T] data/nat/lemmas.lean)
= I, Method random novel_premises
— "{'state_id': 2, 'state': 'abc : M\\n— a + (¢c +b) =a+c+b', "proof_finished':

begin
rw [mod_eq_sub_mod (le_refl _), nat.sub_self, zero_mod]|* False}'

Math library |cng \ tidy 23.8 5.4
\‘ GPT—4 28 8 7 5 After applying the “add_comm" lemma, we have the new goal:

RESPONSE FROM LEANDOJO ©)

ojojo
JUL

\
! For any three integers "a", "b",and "¢",thesum "a + (¢ + b) isequaltothesum "a + ¢
data/nat/ged.lean ', ReProver (ours) 51.4 26.2 o
. S 1 .
def ng : nat -+ nat - nat QCd Y 1 W/O retﬂeval 47 5 22 9 Now, we can see that the left-hand side and the right-hand side of the equation are identical.
| 0 y =Yy -- Case 1: z == : Therefore, we can finish the proof by applying the “refl" tactic, which asserts that any
. — 0 —— .

| (X + 1) y = ng (Y /° (X + 1>) (X + 1) Case 2: z > 0 |l mathematical object is equal to itself.

1

Used LeanDojo /2 LOCALHOST ~

theorem gcd_zero_left (x : mnat) : gecd O x

X := begin simp [gcd] end ’:' % Of theorems prOved

REQUEST TO LEANDOJO
theorem gcd_self (n : nat) : gcd nn =n :=) . . .
begin II |mport W I t h I n 10 m I n u teS ‘ "state_id": 2,
cases L, « "tactic": "refl"

3

{ unfold gcd I,
unfold gcd,
rewrite mod_self,
apply ng_ZerO_left "{'error': 'gen_tac_and_capture_res_failed: pos=(some (1, 2}) msg=\"invalid apply

tactic, failed to unify\\n a + (c + b) = a + ¢ + b\\nwith\\n ?m_2 = ?m_2\"
end tactic_state=\"a b c : N\\n~ a + (¢ + b) = a + ¢ + b\"', 'proof_finished': Falsel}"

RESPONSE FROM LEANDOJO

theorem exercise_2_3_2 {G : Typex} [group G] (a b : G) :
g : G, b *a-= g * a * b * g 1= It seems there was an error when trying to apply the “refl" tactic. This error occurred

FO r I I l al I ZI n g an d p rOVI n g begin because the Lean prover expected the left-hand side and the right-hand side of the equation
exact b, by Simp s to be syntactically identical, but they are not due to the parentheses.
. end
t eo rel I l S I n ean To resolve this, we can apply the “add_assoc lemma again to remove the parentheses on
theorem exercise_11 2 13 (a b :) : the left-hand side. This will make the left-hand side and the right-hand side syntactically
(of_int a : gaussian_int) of_int b - a Db := identical, allowing us to apply the “refl" tactic.
begin
contrapose Used LeanDojo 42 LOCALHOST ~
2
simp,
end REQUEST TO LEANDOJO ®
theorem exercise_1_1_17 {G : Typex*} [group G] {x : G} {n : } "state_id": 2,
(h d f_ -~) "tactic": "rw ¢add_assoc"
Xn: oraer_o1r X = 1n . 3
x'=x"(n-1:) :=
begin RESPONSE FROM LEANDOJO (D)
rw zpow_sub_one,
Simp "{'proof_finished': Truel}"
H
rw [« hxn, pow_order_of_eq_one],
end After applying the “add_assoc” lemma again to remove the parentheses, we have:
]
o0 theorem exercise_3_1_22b {G : Typex} [group Gl (I : Typex) For any three integers "a”, "b*,and “¢",thesum "a + ¢ + b” isequaltothesum "a + ¢ +
® (H: I subgroup G) (hH : i : I, subgroup.normal (H i)) : b
oo subgroup.normal ((i : I), H i):=
o begin Now, the left-hand side and the right-hand side of the equation are syntactically identical.
: rw infi, Therefore, the theorem is proved. The proof is finished.
® rw +set.image_univ,
000 o000 PY rw Inf_image,
® ® @ simp [hH],
o0 e o o haveI := i, (H i).normal,
PP T H ChatGPT proves theorems
(N J e o6 o o o 060 000000 o intros x hx g,
® ® o000 e o o rw subgroup.mem_infi at hx , . . .
et Sates e by interacting with Lean
2
o oo e0600 e - apply (hH i).conj_mem _ (hx i), y
L N o0 00 o0000OCGO L N end
LN o000 [[
0000 o0 o000 o000
000000 ® o0 o0 theorem exercise_3_4_5a {G : Type*} [group GJ
() o 0000 00 O (H : subgroup G) [is_solvable G] : is_solvable H :=
begin
apply_instance,
end

The first open-source

LLMs for theorem proving New proofs discovered

by ReProver

	Slide 1

