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Computer-Aided Proofs in Mathematics

Tutorial on Neuro-Symbolic Theorem Proving with Lean 2

Four Color Theorem
Computers check 1000+ configurations

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976]
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Computer-Aided Proofs in Mathematics
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Blowup of the Euler Equations
Computers calculate bounds of integrals

[Chen and Thomas, "Stable Nearly Self-similar Blowup Of The 2D 
Boussinesq And 3D Euler Equations With Smooth Data", 2022]

Four Color Theorem
Computers check 1000+ configurations

[Appel and Haken, "Every Planar Map Is Four Colorable", 1976]
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Automated Reasoning and Formal Proofs
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Hardware verificationSoftware verification Cyber-physical systemsFormal mathematics
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Automated Reasoning and Formal Proofs
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• Automated theorem proving

• SMT solvers, model checkers, ATP 
systems in first-order logic, etc.

• Minimal efforts from humans

• Limited expressiveness

• Difficult to scale
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Automated Reasoning and Formal Proofs
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• Interactive theorem proving

• Proof assistants such as Coq, Isabelle, and Lean 

• Expressive logic, e.g., dependent type theory

• Successfully used in large formalization projects

• Lots of efforts from humans to write proofs 

[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Klein et al., "seL4: Formal Verification of an OS Kernel", 2009]
[Leroy, "Formal Verification of a Realistic Compiler", 2008]
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Automated Reasoning and Formal Proofs
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• Interactive theorem proving

• Proof assistants such as Coq, Isabelle, and Lean 

• Expressive logic, e.g., dependent type theory

• Successfully used in large formalization projects

• Lots of efforts from humans to write proofs 

• Proof automation is critical for wider adoption

[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Klein et al., "seL4: Formal Verification of an OS Kernel", 2009]
[Leroy, "Formal Verification of a Realistic Compiler", 2008]
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Automated Reasoning and Formal Proofs
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• Interactive theorem proving

• Proof assistants such as Coq, Isabelle, and Lean 

• Expressive logic, e.g., dependent type theory

• Successfully used in large formalization projects

• Lots of efforts from humans to write proofs 

• Proof automation is critical for wider adoption
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• Automated theorem proving

• SMT solvers, model checkers, ATP 
systems in first-order logic, etc.

• Minimal efforts from humans

• Limited expressiveness

• Difficult to scale
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛

2 • Generate the proof fully automatically

Tutorial on Neuro-Symbolic Theorem Proving with Lean9/5/2024
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛

2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛

2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦

Conjunctive normal form (CNF)

Resolution

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛
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¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦

…

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛

2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦

…

…

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛
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¬𝑞⋁𝑝⋁¬𝑟
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∅

Conjunctive normal form (CNF)

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛

2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦

…

…

∅

[Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
• Main challenge: Large search space

• Heuristics for pruning the search space
   [Kovács and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
 [Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
 [Korovin, IJCAR 2008]  [Kaliszyk et al. NeurIPS 2018]
    
  

• Successful examples: Robbins Conjecture

• Intractable for most theorems
Conjunctive normal form (CNF)

[McCune, “Solution of the Robbins Problem”, 1997]

Tutorial on Neuro-Symbolic Theorem Proving with Lean9/5/2024
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Automated Theorem Proving

1 + 2 + ⋯+ 𝑛 =
𝑛 + 1 𝑛

2

¬𝑞⋁𝑝⋁¬𝑟

𝑞⋁¬𝑥⋁𝑦

𝑝⋁¬𝑟⋁¬𝑥⋁𝑦

…

…

∅

[Haken, “The Intractability of Resolution”, Theoretical Computer Science, 1985]

• Generate the proof fully automatically
• Low-level: First-order logic, CNFs, and resolution
• Main challenge: Large search space

• Heuristics for pruning the search space
   [Kovács and Voronkov, CAV 2013] [Urban et al. TABLEAUX 2011]
 [Schulz et al. CADE 2019]. [Loos et al. LPAR-21]
 [Korovin, IJCAR 2008]  [Kaliszyk et al. NeurIPS 2018]
    
  

• Successful examples: Robbins Conjecture

• Intractable for most theorems in math
• Lack high-level intuitions of mathematiciansConjunctive normal form (CNF)

[McCune, “Solution of the Robbins Problem”, 1997]
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Interactive Theorem Proving
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Theorem

Proof
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Interactive Theorem Proving

• Theorems/proofs represented formally as programs
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Theorem

Proof
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Interactive Theorem Proving

• Theorems/proofs represented formally as programs
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[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Leroy et al., "CompCert - A Formally Verified Optimizing Compiler", 2016]

Theorem

Proof

Software

Mathematics

Formalize
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Interactive Theorem Proving

• Theorems/proofs represented formally as programs

• Proofs can be checked easily
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Theorem

Proof

Software

Mathematics

Formalize

[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Leroy et al., "CompCert - A Formally Verified Optimizing Compiler", 2016]
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Interactive Theorem Proving

• Theorems/proofs represented formally as programs

• Proofs can be checked easily
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Theorem

Proof

Software

Mathematics

Formalize
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[Hales et al., "A Formal Proof of the Kepler Conjecture", 2017]
[Leroy et al., "CompCert - A Formally Verified Optimizing Compiler", 2016]



Theorem Proving in Proof Assistants
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n : ℕ 
⊢ gcd n n = n

Proof assistant

Human
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Theorem Proving in Proof Assistants
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n : ℕ 
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ 
⊢ gcd (k + 1) (k + 1) = k + 1

cases n

Proof assistant

Human
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unfold gcd

Theorem Proving in Proof Assistants
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n : ℕ 
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ 
⊢ gcd (k + 1) (k + 1) = k + 1

cases n

Proof assistant

Human
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unfold gcd
unfold gcd

Theorem Proving in Proof Assistants
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n : ℕ 
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ 
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ 
⊢  gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

cases n

Proof assistant

Human
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rewrite mod_self

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants
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rewrite mod_self

apply gcd_zero_left

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants
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rewrite mod_self

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants
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n : ℕ 
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ 
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ 
⊢  gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

k : ℕ 
⊢ gcd 0 (k + 1) = k + 1

cases n

Proof assistant

Human

apply gcd_zero_left

Tutorial on Neuro-Symbolic Theorem Proving with Lean

• Efficient decision procedures
 [Grégoire and Mahboubi, "Proving Equalities in a Commutative Ring Done 

Right in Coq", 2005]

• Hammers: outsource to external ATP systems
 [Blanchette, et al., "Hammering towards QED", 2016]

• Proof search within the proof assistant
 Coq’s auto tactic
 [Limperg and From, "Aesop: White-Box Best-First Proof Search for Lean", 2023]
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rewrite mod_self

apply gcd_zero_left

unfold gcd
unfold gcd

Theorem Proving in Proof Assistants
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n : ℕ 
⊢ gcd n n = n

⊢ gcd 0 0 = 0 k : ℕ 
⊢ gcd (k + 1) (k + 1) = k + 1

k : ℕ 
⊢  gcd ((k + 1) % (k + 1)) (k + 1) = k + 1

k : ℕ 
⊢ gcd 0 (k + 1) = k + 1

cases n

Proof assistant

Human

Machine 
learning

Tutorial on Neuro-Symbolic Theorem Proving with Lean

• Complementary to formal methods for proof automation
• Learning from human-written proofs

• ~100K proofs in Lean
• More in Coq and Isabelle

• Math knowledge learned from large-scale pretraining
• Large language models (LLMs)
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Why is Theorem Proving Important for AI?

Tutorial on Neuro-Symbolic Theorem Proving with Lean 319/5/2024



The Era of Large Language Models (LLMs)

Tutorial on Neuro-Symbolic Theorem Proving with Lean 32

[Ma et al., Eureka, 2023] [Wang et al., Voyager, 2023]
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Theorem Proving and LLMs
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Mathematical reasoning
with LLMs

Code generation
with LLMs

Theorem proving
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Theorem Proving and LLMs
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Mathematical reasoning
with LLMs

Code generation
with LLMs

Theorem proving
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Mathematical Reasoning with LLMs

• GPT-4 scored 89th percentile on SAT Math
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Mathematical Reasoning with LLMs

• GPT-4 scored 89th percentile on SAT Math

• Specialized math LLMs: Minerva, MetaMath, WizardMath, MAmmoTH, Llemma

Tutorial on Neuro-Symbolic Theorem Proving with Lean 36

[Lewkowycz et al., Minerva, 2022] [Azerbayev et al., Llemma, 2023]
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Informal vs. Formal Mathematical Reasoning

Tutorial on Neuro-Symbolic Theorem Proving with Lean 37

Informal Formal

Important for LLMs to tackle advanced mathematics
• Grounded in environments that can provide feedback
• Simple and rigorous evaluation: formal proofs can be 

checked (no hallucination)

9/5/2024



Checking Mathematical Proofs is Hard for Humans
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Theorem Proving and LLMs
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Mathematical reasoning
with LLMs

Code generation
with LLMs

Theorem proving

9/5/2024



Theorem Proving and LLMs
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Mathematical reasoning
with LLMs

Code generation
with LLMs

Theorem proving
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Code Generation with LLMs
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Passing a few testing examples ≠ correctness
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Code Generation with LLMs
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What if x and y are negative?

Passing a few testing examples ≠ correctness
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Code Generation with LLMs
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Passing a few testing examples ≠ correctness
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How Can We Trust AI-Generated Code?
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Theorem Proving for Verified Code Generation

• Generate code + formal specification (theorem) + formal proof

Tutorial on Neuro-Symbolic Theorem Proving with Lean 45

Code

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

Code generation

9/5/2024



Theorem Proving for Verified Code Generation

• Generate code + formal specification (theorem) + formal proof
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Code

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

Code generation

Verified Code generation

Specification (Theorem)
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Theorem Proving for Verified Code Generation

• Generate code + formal specification (theorem) + formal proof
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Code

Specification (Theorem)

Proof

[Sun and Sheng et al., "Clover: Closed-Loop Verifiable Code Generation", 2023]

Code generation

Verified Code generation
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Theorem Proving and LLMs: Takeaways
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Mathematical reasoning
with LLMs

Code generation
with LLMs

Theorem proving

• Elementary math -> advanced math

• Verified code generation

• Feedback & evaluation at scale: AI mathematicians/programmers
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Theorem Proving and LLMs: Takeaways
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Proof assistantsMachine learning



How to Prove Theorems (with Machine Learning)?
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Proof Assistants (Interactive Theorem Provers)

Tutorial on Neuro-Symbolic Theorem Proving with Lean 51

Humans Proof assistants+
IDEs for writing formal proofs

Theorem

Proof
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Examples of Proof Assistants

Tutorial on Neuro-Symbolic Theorem Proving with Lean 52

Coq
[Barras et al., 1997]

Isabelle
[Nipkow et al., 2002]

Lean
[de Moura et al., 2015]

• >100K proofs in different repos
• Popular for software verification, e.g.,

CompCert [Leroy et al., 2016]

• ~100K proofs in Mathlib
• Liquid tensor experiment 

[Commelin, 2022]

• Polynomial Freiman-Ruzsa 
conjecture (led by Terence Tao)

• Large formal libraries: ~250K
proofs
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Examples of Proof Assistants
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Coq
[Barras et al., 1997]

Isabelle
[Nipkow et al., 2002]

Lean
[de Moura et al., 2015]

• >100K proofs in different repos
• Popular for software verification, e.g.,

CompCert [Leroy et al., 2016]

• Large formal libraries: ~250K
proofs

[First et al., Baldur, 2023]
[Jiang et al., Thor, 2022]
[Mikuła et al., Magnushammer, 2023]
[Jiang et al., DSP, 2023]
[Wu et al., Autoformalization, 2022]
[Li et al., IsarStep, 2021]
[Wang and Xin et al., LEGO-Prover, 2023]

[Huang et al., GamePad, 2018]
[Yang and Deng, CoqGym, 2019]
[Sivaraman, et al., Lemma Synthesis, 2022]
[Sanchez-Stern et al., Proverbot9001, 2020]
[Ringer et al., REPLica, 2020]
[Sanchez-Stern and First et al., Passport, 2023]

[Han et al., PACT, 2022]
[Polu et al., 2023]
[Lample et al., HTPS 2022]
[Want et al., DT-Solver, 2023]
[Yang et al., LeanDojo, 2023]
[Thakur et al., COPRA, 2023]

• ~100K proofs in Mathlib
• Liquid tensor experiment 

[Commelin, 2022]

• Polynomial Freiman-Ruzsa 
conjecture (led by Terence Tao)
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Examples of Proof Assistants
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Coq
[Barras et al., 1997]

Isabelle
[Nipkow et al., 2002]

Lean
[de Moura et al., 2015]

• >100K proofs in different repos
• Popular for software verification, e.g.,

CompCert [Leroy et al., 2016]

• Large formal libraries: ~250K
proofs

• ~100K proofs in Mathlib
• Liquid tensor experiment 

[Commelin, 2022]

• Polynomial Freiman-Ruzsa 
conjecture (led by Terence Tao)

[First et al., Baldur, 2023]
[Jiang et al., Thor, 2022]
[Mikuła et al., Magnushammer, 2023]
[Jiang et al., DSP, 2023]
[Wu et al., Autoformalization, 2022]
[Li et al., IsarStep, 2021]
[Wang and Xin et al., LEGO-Prover, 2023]

[Huang et al., GamePad, 2018]
[Yang and Deng, CoqGym, 2019]
[Sivaraman, et al., Lemma Synthesis, 2022]
[Sanchez-Stern et al., Proverbot9001, 2020]
[Ringer et al., REPLica, 2020]
[Sanchez-Stern and First et al., Passport, 2023]

[Han et al., PACT, 2022]
[Polu et al., 2023]
[Lample et al., HTPS 2022]
[Want et al., DT-Solver, 2023]
[Yang et al., LeanDojo, 2023]
[Thakur et al., COPRA, 2023]
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Proving Theorems Using Language Models

Tutorial on Neuro-Symbolic Theorem Proving with Lean 55

[Vaswani et al., Transformer, 2017]

Input: Theorem

Output: Proof

9/5/2024



Generating Proof Steps (Tactics)
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Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b

Input: Proof state

9/5/2024



Generating Proof Steps (Tactics)

Tutorial on Neuro-Symbolic Theorem Proving with Lean 58

⊢ ∀ (a b c : ℕ), a + b + c = a + c + b
a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c

Input: Proof state Output: Tactic
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Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b
a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c

Input: Proof state Output: Tactic

rw [Nat.add_right_comm]
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Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b
a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c

Input: Proof state Output: Tactic

rw [Nat.add_right_comm]

Tactic generator
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Generating Proof Steps (Tactics)
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b
a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c rw [Nat.add_right_comm]

norm_cast

apply Nat.rec
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Searching for Proofs
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b
a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c rw [Nat.add_right_comm]

norm_cast

apply Nat.rec

norm_cast

apply Nat.rec
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Searching for Proofs
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⊢ ∀ (a b c : ℕ), a + b + c = a + c + b
a b c: ℕ
⊢ a + b + c = a + c + b

intro a b c rw [Nat.add_right_comm]

norm_cast

apply Nat.rec

norm_cast

apply Nat.rec

Classical proof search algorithms
• Depth first search (DFS)
• Breadth first search (BFS)
• …
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We’ve successfully built a simple prover!
… now what?

Proof search Premise 
selection

Reinforcement 
Learning

Synthetic data 
generation
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Best First Search
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…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

• Explore the most promising node

• Use accumulated scores from the tactic 
generator to rank the nodes
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Best First Search
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…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

• Explore the most promising node

• Use accumulated scores from the tactic 
generator to rank the nodes

-0.1

-0.05

-0.1 + (-0.05) = -0.15
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Best First Search
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[Han et al., PACT, ICLR 2022]
[Polu et al., ICLR 2023]
[Jiang et al., Thor, NeurIPS 2022]
[Yang et al., LeanDojo, NeurIPS 2023]

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

…
⊢ …

• Explore the most promising node

• Use accumulated scores from the tactic 
generator to rank the nodes

• Simple and widely used
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Hyper Tree Proof Search

Tutorial on Neuro-Symbolic Theorem Proving with Lean 68

[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)

• Update visit counts and estimated values for each node
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Hyper Tree Proof Search
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[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)

• Update visit counts and estimated values for each node
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Hyper Tree Proof Search
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[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)

• Update visit counts and estimated values for each node
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Hyper Tree Proof Search
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[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]

• Inspired by Monte Carlo Tree Search (MCTS)

• Update visit counts and estimated values for each node
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Is Proof Search Really Necessary?

• Baldur: It’s possible to build state-of-the-art provers without search

• 6B and 62B models finetuned from Minerva on Isabelle proofs

Tutorial on Neuro-Symbolic Theorem Proving with Lean 72

[First et al., "Baldur: Whole-Proof Generation and Repair with Large Language Models", FSE 2023]
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Premise Selection

• Premise selection: A key challenge in theorem proving

• Studied as a separate task w/o theorem proving

Tutorial on Neuro-Symbolic Theorem Proving with Lean 73

[Irving et al., DeepMath, NeurIPS 2016]
[Wang et al., "Premise Selection for Theorem Proving by Deep Graph Embedding", NeurIPS 2017]
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Magnushammer

• Premises selected by Transformer + a simple symbolic prover

Tutorial on Neuro-Symbolic Theorem Proving with Lean 74

[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]
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Magnushammer

• Premises selected by Transformer + a simple neuro-symbolic prover
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[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]
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Magnushammer

• Premises selected by Transformer + a simple neuro-symbolic prover
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[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]

9/5/2024



Magnushammer

• Premises selected by Transformer + a simple neuro-symbolic prover

Tutorial on Neuro-Symbolic Theorem Proving with Lean 77

[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]
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Magnushammer

• Premises selected by Transformer + a simple neuro-symbolic prover

Tutorial on Neuro-Symbolic Theorem Proving with Lean 78

[Mikuła et al., "Magnushammer: A Transformer-based Approach to Premise Selection", 2023]
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ReProver: Retrieval-Augmented Prover

• Given a state, we retrieve premises from accessible premises

79Tutorial on Neuro-Symbolic Theorem Proving with Lean

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]
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ReProver: Retrieval-Augmented Prover

80

• Given a state, we retrieve premises from accessible premises

Tutorial on Neuro-Symbolic Theorem Proving with Lean

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]

9/5/2024



ReProver: Retrieval-Augmented Prover

81

• Given a state, we retrieve premises from accessible premises

Tutorial on Neuro-Symbolic Theorem Proving with Lean

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]
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ReProver: Retrieval-Augmented Prover

82

• Given a state, we retrieve premises from accessible premises

• Retrieved premises are concatenated with the state and used for tactic generation

Tutorial on Neuro-Symbolic Theorem Proving with Lean

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]

9/5/2024



ReProver: Retrieval-Augmented Prover

83

• Given a state, we retrieve premises from accessible premises

• Retrieved premises are concatenated with the state and used for tactic generation

Tutorial on Neuro-Symbolic Theorem Proving with Lean

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]

9/5/2024



ReProver: Retrieval-Augmented Prover

84Tutorial on Neuro-Symbolic Theorem Proving with Lean

[Yang et al., "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models", NeurIPS 2023]

9/5/2024



Reinforcement Learning

Tutorial on Neuro-Symbolic Theorem Proving with Lean 859/5/2024

[Bansal et al., "Learning to Reason in Large Theories without Imitation“, arXiv 2020]
[Wu et al., "TacticZero: Learning to Prove Theorems from Scratch with Deep 
Reinforcement Learning“, NeurIPS 2021]
[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]
[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]

• Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

• LLMs perform badly on out-of-domain data



Expert Iteration

• Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

• LLMs perform badly on out-of-domain data
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[Bansal et al., "Learning to Reason in Large Theories without Imitation“, arXiv 2020]
[Wu et al., "TacticZero: Learning to Prove Theorems from Scratch with Deep 
Reinforcement Learning“, NeurIPS 2021]
[Lample et al., "HyperTree Proof Search for Neural Theorem Proving", NeurIPS 2022]
[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]



Expert Iteration

• Specialized domains without sufficient existing proofs for training, e.g., MiniF2F

• LLMs perform badly on out-of-domain data

• Solution: Iteratively improve the prover on the new domain

1. Train the prover

2. Use the prover to find new proofs

3. Add new proofs to the training data and go back to step 1

Tutorial on Neuro-Symbolic Theorem Proving with Lean 87

[Polu et al., "Formal Mathematics Statement Curriculum Learning", 2023]
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Wait! There’s something left out…
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MiniF2F Benchmark

• Math olympiads problems from AMC, AIME, IMO, etc.

• 488 theorems (many w/o proof) for evaluation; no training

Tutorial on Neuro-Symbolic Theorem Proving with Lean 89

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]
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MiniF2F Benchmark

• Math olympiads problems from AMC, AIME, IMO, etc.

• 488 theorems (many w/o proof) for evaluation; no training

• Open problems:
• How to formalize problems asking for numerical answers?

• How to deal with geometry?

Tutorial on Neuro-Symbolic Theorem Proving with Lean 90

[Zheng et al., "MiniF2F: A Cross-System Benchmark for Formal Olympiad-Level Mathematics", 2022]
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Datasets & Benchmarks

91Tutorial on Neuro-Symbolic Theorem Proving with Lean9/5/2024

High quality datasets are available for Lean & Coq

[Yang et al., "LeanDojo: Theorem Proving with 
Retrieval-Augmented Language Models", 2023]

LeanDojo

• 98,641 theorems and proofs 
• 217,639 tactics 
• 129,162 premises

[Yang et al., "Learning to Prove Theorems via 
Interacting with Proof Assistants", 2019]

CoqGym

• 71K human-written proofs
• Ranging among 123 projects



Data Extraction in LeanDojo

92

data/nat/gcd.lean

data/nat/lemmas.lean

Math library

Import

• ASTs, tactics

• From Lean’s parser

• Proof goals

• From Lean’s InfoTree

• Premises

• Definitions, lemmas, etc.

• Where they are used/defined

• Also in the InfoTree

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean



Programmatical Interaction in LeanDojo

• Replace the human-written proof with a single repl tactic

• repl performs IO to provide a command line interface for interacting with Lean

• Wrap the interface in any language, e.g., Python

93

data/nat/gcd.lean

repl

9/5/2024 Tutorial on Neuro-Symbolic Theorem Proving with Lean



Proof Artifact Co-training

• LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

• 9 auxiliary tasks

• Next lemma prediction: Proof goal -> the next lemma to be applied

• Type prediction: Partial proof term -> its type

• Theorem naming: theorem statement -> its name

• …

Tutorial on Neuro-Symbolic Theorem Proving with Lean 94

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]
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Proof Artifact Co-training

• LLMs are data-hungry, but human-written proofs are limited (~100K proofs in mathlib)

• 9 auxiliary tasks

• Next lemma prediction: Proof goal -> the next lemma to be applied

• Type prediction: Partial proof term -> its type

• Theorem naming: theorem statement -> its name

• …

• Key insight: Training on tactic generation + auxiliary tasks is better than tactic generation alone

Tutorial on Neuro-Symbolic Theorem Proving with Lean 95

[Han et al., "Proof Artifact Co-training for Theorem Proving with Language Models", 2022]
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Autoformalization

Tutorial on Neuro-Symbolic Theorem Proving with Lean 96

[Wu et al., "Autoformalization with Large Language Models", 2022]
[Jiang et al., “Multilingual Mathematical Autoformalization”, 2023]

• LLMs translate informal math into formal math

• Evaluation can be hard

9/5/2024



Alpha Proof
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Logic Systems for Specific domains
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[Murphy et al., "Autoformalizing Euclidean Geometry", 2024]



Logic Systems for Specific domains
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• Alpha Geometry → Alpha Geometry 2



Bridging Machine Learning and Theorem Proving
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Lean Machine learning model

Machine learning researchers work on theorem proving
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Bridging Machine Learning and Theorem Proving
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Lean Machine learning model

Learning-based proof automation tools for Lean users

Machine learning researchers work on theorem proving

9/5/2024



Bridging Machine Learning and Theorem Proving
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Lean Machine learning model

Learning-based proof automation tools for Lean users

• Run on CPUs reasonably fast

• Integrated into VSCode

• Care about a specific domain, not aggregated performance on mathlib

Machine learning researchers work on theorem proving

9/5/2024



Tools for Interfacing with GPT-4

Tutorial on Neuro-Symbolic Theorem Proving with Lean 103

[Morrison et al., “Sagredo: automated dialogue between GPT and Lean”]
https://www.youtube.com/watch?v=CEwRMT0GpKo

9/5/2024

https://www.youtube.com/watch?v=CEwRMT0GpKo


ChatGPT Plugin for Theorem Proving in Lean
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Tools for Premise Selection

• Built-in tactics such as library_search, apply?, exact?

Tutorial on Neuro-Symbolic Theorem Proving with Lean 105

[Piotrowski et al. "Machine-Learned Premise Selection for Lean"]
https://github.com/BartoszPiotrowski/lean-premise-selection 

9/5/2024

https://github.com/BartoszPiotrowski/lean-premise-selection


Tools for Tactic Suggestion

Tutorial on Neuro-Symbolic Theorem Proving with Lean 106

[Welleck and Saha, “llmstep: LLM proofstep suggestions in Lean”]
https://github.com/wellecks/llmstep

9/5/2024

https://github.com/wellecks/llmstep
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Lean Copilot Toolkit

9/5/2024

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurIPS MATH-AI, 2023]

Easy to install just like any Lean package
Run locally on most laptops w/o GPUs

Respond in seconds
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Tactic Suggestion

9/5/2024

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurIPS MATH-AI, 2023]

Easy to install just like any Lean package
Run locally on most laptops w/o GPUs

Respond in seconds
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Proof Search

9/5/2024

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurIPS MATH-AI, 2023]

Easy to install just like any Lean package
Run locally on most laptops w/o GPUs

Respond in seconds
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Premise Selection

9/5/2024

[Song et al., "Towards Large Language Models as Copilots for Theorem Proving in Lean”, NeurIPS MATH-AI, 2023]

Easy to install just like any Lean package
Run locally on most laptops w/o GPUs

Respond in seconds

With rich annotations!

• In-scope premises: provide type information and doc strings
• Out-of-scope premises: provide complete definition + instruction on usage



Bridging Machine Learning and Theorem Proving
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Lean Machine learning model

Learning-based proof automation tools for Lean users

Machine learning researchers work on theorem proving

9/5/2024



Neuro-Symbolic Theorem Proving with Lean

Tutorial on Neuro-Symbolic Theorem Proving with Lean 1129/5/2024

• LeanDojo: Theorem Proving with Retrieval-Augmented 
Language Models
• LeanDojo: Data Extraction & Interaction Tool for Theorem 

Proving in Lean

• ReProver: Retrieval-Augmented Language Model as Theorem 
Prover

• Towards Large Language Models as Copilots for 
Theorem Proving in Lean
• Lean Copilot: Native Machine Learning Toolkit in Lean

• LLM-Powered Tools for Tactic Suggestion, Proof Search & 
Premise Selection



Neuro-Symbolic Theorem Proving with Lean
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Happy to take questions!

Peiyang Song

California Institute of Technology

psong@caltech.edu
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